Abstract:<p> Models of seven discrete facial expressions are built on macro-level facial muscle variations for separating distinct affective states. We propose a step-wise Hierarchical Separation and Classification Network (HSCN) that discovers dynamic and continuous macro- and micro-level variations in facial expressions. The HSCN first invokes an unsupervised cosine similarity-based separation method on continuous facial expression data and extracts twenty-one dynamic expression classes from the seven common di… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.