Reservoirs are designed and operated to mitigate hydroclimatic variability and extremes to fulfill various beneficial purposes. Existing reservoir infrastructure capacity and operation policies derived from historical records are challenged by hydrologic regime change and storage reduction from sedimentation. Furthermore, climate change could amplify the water footprint of reservoir operation (i.e., non-beneficial evaporative loss), further influencing the complex interactions among hydrologic variability, reservoir characteristics, and operation decisions. Disentangling and quantifying these impacts is essential to assess the effectiveness of reservoir operation under future climate and identify the opportunities for adaptive reservoir management (e.g., storage reallocation). Using reservoirs in Texas as a testing case, this study develops data-driven models to represent the current reservoir operation policies and assesses the challenges and opportunities in flood control and water supply under dynamically downscaled climate projections from the Coupled Model Intercomparison Project Phase 6 (CMIP6). We find that current policies are robust in reducing future flood risks by eliminating small floods, reducing peak magnitude, and extending the duration for large floods. Current operation strategies can effectively reduce the risk of storage shortage for many reservoirs investigated, but reservoir evaporation and sedimentation pose urgent needs for revisions in the current guidelines to enhance system resilience. We also identify the opportunities for reservoir storage reallocation through seasonal-varying conservation pool levels to improve water supply reliability with negligible flood risk increase. This study provides a framework for stakeholders to evaluate the effectiveness of the current reservoir operation policy under future climate through the interactions among hydroclimatology, reservoir infrastructure, and operation policy.