We consider an approach for solving strictly convex quadratic programs (QPs) with general linear inequalities by the alternating direction method of multipliers (ADMM). In particular, we focus on the application of ADMM to the QPs of constrained Model Predictive Control (MPC). After introducing our ADMM iteration, we provide a proof of convergence closely related to the theory of maximal monotone operators. The proof relies on a general measure to monitor the rate of convergence and hence to characterize the optimal step size for the iterations. We show that the identified measure converges at a Q-linear rate while the iterates converge at a 2-step Q-linear rate. This result allows us to relax some of the existing assumptions in optimal step size selection, that currently limit the applicability to the QPs of MPC. The results are validated through a large public benchmark set of QPs of MPC for controlling a four tank process.
American Control Conference (ACC), 2014This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Abstract-We consider an approach for solving strictly convex quadratic programs (QPs) with general linear inequalities by the alternating direction method of multipliers (ADMM). In particular, we focus on the application of ADMM to the QPs of constrained Model Predictive Control (MPC). After introducing our ADMM iteration, we provide a proof of convergence closely related to the theory of maximal monotone operators. The proof relies on a general measure to monitor the rate of convergence and hence to characterize the optimal step size for the iterations. We show that the identified measure converges at a Q-linear rate while the iterates converge at a 2-step Q-linear rate. This result allows us to relax some of the existing assumptions in optimal step size selection, that currently limit the applicability to the QPs of MPC. The results are validated through a large public benchmark set of QPs of MPC for controlling a four tank process.