Almost all living organisms need to obtain molybdenum from the external medium to achieve essential processes for life. Activity of important enzymes such as sulfite oxidase, aldehyde oxidase, xanthine dehydrogenase, and nitrate reductase is strictly dependent on the presence of Mo in its active site. Cells take up Mo in the form of the oxianion molybdate, but the molecular nature of the transporters is still not well known in eukaryotes. MOT1 is the first molybdate transporter identified in plant-type eukaryotic organisms, but it is absent in animal genomes. Here we report a molybdate transporter different from the MOT1 family, encoded by the
Chlamydomonas reinhardtii
gene
MoT2
, that is also present in animals including humans. The knockdown of
CrMoT2
transcription leads to the deficiency of molybdate uptake activity in
Chlamydomonas
. In addition, heterologous expression in
Saccharomyces cerevisiae
of
MoT2
genes from
Chlamydomonas
and humans support the functionality of both proteins as molybdate transporters. Characterization of CrMOT2 and HsMOT2 activities showed an apparent Km of about 550 nM that, though higher than the Km reported for MOT1, still corresponds to high affinity systems.
CrMoT2
transcription is activated when extracellular molybdate concentration is low but in contrast to
MoT1
is not activated by nitrate. Analysis of protein databases revealed the presence of four motifs present in all the proteins with high similarity to MOT2, that label a previously undescribed family of proteins probably related to molybdate transport. Our results open the way toward the understanding of molybdate transport as part of molybdenum homeostasis and Moco biosynthesis in animals.