Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The ability to measure changes in neural activities using devices implanted in the brain can be useful for recording brain signals to assess specific risk factors, monitor the development of brain diseases, and expand the understanding of neural circuitry. Here, a neuroimplantable interface is introduced that integrates biomaterials with an advanced structural design to facilitate monitoring of electrophysiological responses in widespread brain regions. The neural interface uses biocompatible and photopatternable materials to create ultrathin, homogeneous encapsulant/substrate laminates. Comprehensive in vitro tests of the laminin‐enveloped neural interface demonstrate efficacy in relieving inflammation via a biomimetic strategy by diminishing microglia and astrocyte aggregation near recording sites, enhancing periodic signal acquisition. The performance is evaluated by injecting an acetylcholine receptor agonist into mouse brains. This approach enables to monitor real‐time signal changes, gain insights into neural network dynamics by assessing stimulus‐evoked signaling at specific sites, and identify signaling patterns and hippocampal synaptic connections. Additionally, in a Parkinson's disease mouse model, deep brain stimulation is performed and signals are recorded to confirm symptom amelioration, offering a biomedical device approach. The key strategy highlights intact neural electrodes with biocompatible, mechanically compliant materials conferring compact bioelectronic functionalities, high neuronal microenvironment compatibility, and pathological neural system recognition.
The ability to measure changes in neural activities using devices implanted in the brain can be useful for recording brain signals to assess specific risk factors, monitor the development of brain diseases, and expand the understanding of neural circuitry. Here, a neuroimplantable interface is introduced that integrates biomaterials with an advanced structural design to facilitate monitoring of electrophysiological responses in widespread brain regions. The neural interface uses biocompatible and photopatternable materials to create ultrathin, homogeneous encapsulant/substrate laminates. Comprehensive in vitro tests of the laminin‐enveloped neural interface demonstrate efficacy in relieving inflammation via a biomimetic strategy by diminishing microglia and astrocyte aggregation near recording sites, enhancing periodic signal acquisition. The performance is evaluated by injecting an acetylcholine receptor agonist into mouse brains. This approach enables to monitor real‐time signal changes, gain insights into neural network dynamics by assessing stimulus‐evoked signaling at specific sites, and identify signaling patterns and hippocampal synaptic connections. Additionally, in a Parkinson's disease mouse model, deep brain stimulation is performed and signals are recorded to confirm symptom amelioration, offering a biomedical device approach. The key strategy highlights intact neural electrodes with biocompatible, mechanically compliant materials conferring compact bioelectronic functionalities, high neuronal microenvironment compatibility, and pathological neural system recognition.
Neural probe devices have undergone significant advancements in recent years, evolving from basic single‐functional devices to sophisticated integrated systems capable of sensing, stimulating, and regulating neural activity. The neural probes have been demonstrated as effective tools for diagnosing and treating numerous neurological disorders, as well as for understanding sophisticated connections and functions of neuron circuits. The multifunctional neural probe platforms, which combine electrical, optical, and chemical sensing capabilities, hold promising potential for revolutionizing personalized healthcare through closed‐loop neuromodulation, particularly in the treatment of conditions such as epilepsy, Parkinson's disease, and depression. Despite these advances, several challenges remain to be further investigated, including biocompatibility, long‐term signal quality and stability, and miniaturization, all of which hinder their broader clinical application. This paper provides an overview of the design principles of the neural probe structures and sensors, fabrication strategies, and integration techniques for the advanced multi‐functional neural probes. Key electrical, optical, and chemical sensing mechanisms are discussed, along with the selection of corresponding functional materials. Additionally, several representative applications are highlighted, followed by a discussion of the challenges and opportunities that lie ahead for this emerging field.
Ammonium level in body fluids serves as one of the critical biomarkers for healthcare, especially those relative to liver diseases. The continuous and real-time monitoring in both invasive and non-invasive manners is highly desired, while the ammonium concentrations vary largely in different body fluids. Besides, the sensing reliability based on ion-selective biosensors can be significantly interfered by potassium ions. To tackle these challenges, a flexible and biocompatible sensing patch for wireless ammonium level sensing was reported with an ultrawide linear range for universal body fluids including blood, tears, saliva, sweat and urine. The as-prepared biocompatible sensors deliver a reliable sensitivity of 58.7 mV decade−1 in the range of 1–100 mM and a desirable selectivity coefficient of 0.11 in the interference of potassium ions, attributed to the cross-calibration within the sensors array. The sensor’s biocompatibility was validated by the cell growth on the sensor surface (> 80%), hemolysis rates (< 5%), negligible cellular inflammatory responses and weight changes of the mice with implanted sensors. Such biocompatible sensors with ultrawide linear range and desirable selectivity open up new possibility of highly compatible biomarker analysis via different body fluids in versatile approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.