In this study, a heterojunction (P+ a-SiC/i intrinsic/n-Si) solar cell has been examined and characterized using the Analysis of Microelectronics and Photonic Structures (AMPS-1D) simulator. In this heterojunction solar cell, an intrinsic layer is imposed to enhance the efficiency and performance. The optimum efficiency of 36.52% (Voc=1.714 V, Jsc=27.006 mA/cm2, and FF=0.789) has been achieved with this intrinsic layer. It has also been observed the solar cell without intrinsic layer. In this case, the maximum efficiency of 2.378% has been observed which is very poor. The heterojunction solar cell also has been investigated with electron blocking layer (EBL) and defect layer. In this case, the simulation result shows the lower efficiency (34.357%) than the previous. This research paper introduces an optimized model of a heterojunction solar cell enhanced with an intrinsic layer to improve efficiency. The proposed design shows significant promise in its theoretical framework. Looking forward, the design could be realized in laboratory settings and has the potential to be scaled up for broader applications.