Summary
This work presents the implementation of a high‐order, finite‐volume scheme suitable for rotor flows. The formulation is based on the variable extrapolation MUSCL‐scheme, where high‐order spatial accuracy (up to fourth‐order) is achieved using correction terms obtained through successive differentiation. A variety of results are presented, including 2‐ and 3‐dimensional test cases. Results with the proposed scheme, showed better wake and higher resolution of vortical structures compared with the standard MUSCL, even when coarse meshes were employed. The method was also demonstrated for 3‐dimensional unsteady flows using overset and moving grids for the UH‐60A rotor in forward flight and the Enhanced Rotorcraft Innovative Concept Achievement tiltrotor in aeroplane mode. For medium grids, the present method adds reasonable CPU and memory overheads and offers good accuracy on relatively coarse grids.