2019
DOI: 10.17706/jcp.14.3.170-183
|View full text |Cite
|
Sign up to set email alerts
|

A High Performance Memory Key-Value Database Based on Redis

Abstract: This paper proposes a high-performance memory key-value database Redis++. In the memory management mechanism, Redis++ can apply and release a fixed-size memory segment from the system. The data in each memory segment is stored consecutively, and the memory is reclaimed based on the profit evaluation value. Secondly, a cache-friendly hash index structure is designed and the structure uses two-level index which can solve the hash collision to complete per search which needs cache mapping only once if possible. I… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(4 citation statements)
references
References 12 publications
0
3
0
1
Order By: Relevance
“…Abandoned models can make it easier for us to achieve high performance and expand storage in the system. It does not provide value operations, and the keyvalue database is mainly used for primary key access operations [17,18].…”
Section: Sound Source Localization Methods For the Nosql Databasementioning
confidence: 99%
“…Abandoned models can make it easier for us to achieve high performance and expand storage in the system. It does not provide value operations, and the keyvalue database is mainly used for primary key access operations [17,18].…”
Section: Sound Source Localization Methods For the Nosql Databasementioning
confidence: 99%
“…These databases are called NoSQL databases. Unlike relational databases, NoSQL databases have multiple types: key-value databases (e.g., LevelDB [ 27 ], BerkeleyDB [ 28 ], Redis [ 29 ]), column-oriented databases (e.g., Bigtable [ 30 ], Apache HBase [ 31 ]), document-oriented databases (e.g., MongoDB [ 32 ]), graph databases (e.g., Neo4j [ 33 ]), time series databases (e.g., InfluxDB [ 34 ]) and so on. NewSQL databases .…”
Section: Preliminariesmentioning
confidence: 99%
“…Sementara itu, pengelola dapat mengelola data sampah yang masuk pada bank sampah di daerah tempat tinggal pengelola, data yang dapat dikelola antara lain data profil para nasabah di dalam bank sampah tersebut, data setoran sampah dari masing-masing nasabah, hingga transaksi masuk dan keluar para nasabah [15]. Pengelola juga dapat mengunduh data pengelolaan sampah dalam kurun waktu yang telah ditentukan secara praktis dan mudah [16].…”
Section: Pendahuluanunclassified