A high precision finite-element forward solver for surface nuclear magnetic resonance incorporating conductivity changes and surface-topography variations
Abstract:Surface nuclear magnetic resonance (SNMR) is a geophysical method that can be used directly for detecting groundwater resources, and it has attracted the attention of many scholars. In this paper, we propose a new effective algorithm for numerical modeling of 3D SNMR data for arbitrary topography in a conductive medium. We adopt a total-field algorithm for solving the quasi-static variant of Maxwell’s equation and handle a complex-shaped loop source by discretizing the transmitter into electric dipoles, which … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.