This paper presents a new structure consisting of a silicon PIN junction with high breakdown voltage and low dark current with two Guard rings. To achieve the optimal structure, the effect of the parameters on the breakdown voltage and the dark current of the device has been investigated and simulated. The intrinsic thickness and impurity, the penetration depth of the active area and guard rings, location and number of guard rings, thickness, and distance between guard rings are the effective parameters of the device's breakdown voltage and dark current. In the proposed structure by placing two guard rings around the active area, the results show that an electric field is distributed at the edge of the active area between the guard rings, which leads to an increase of 292.62 V in breakdown voltage compared to the device without a guard ring.