2017
DOI: 10.1007/s10846-016-0448-7
|View full text |Cite
|
Sign up to set email alerts
|

A Highly Accurate Model-Free Motion Control System with a Mamdani Fuzzy Feedback Controller combined with a TSK Fuzzy Feed-forward Controller

Abstract: Abstract-In this paper, a new intelligent robot motion control architecture -a highly accurate model-free fuzzy motion control-is proposed in order to achieve improved robot motion accuracy and dynamic performance. Its architecture combines a Mamdani fuzzy proportional (P) and a conventional integral (I) plus derivative (D) controller for the feedback part of the system, and a Takagi

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
3
2

Relationship

0
10

Authors

Journals

citations
Cited by 17 publications
(7 citation statements)
references
References 39 publications
0
6
0
1
Order By: Relevance
“…In contrast, fuzzy logic systems have the ability to perform well without knowing the accurate underlying dynamics of a process or a system [ 67 ]. Furthermore, the sensory information of the robot about positioning is imprecise due to the rough surface characteristics of the walls of drains.…”
Section: Fuzzy Logic System For Wall Collision Avoidancementioning
confidence: 99%
“…In contrast, fuzzy logic systems have the ability to perform well without knowing the accurate underlying dynamics of a process or a system [ 67 ]. Furthermore, the sensory information of the robot about positioning is imprecise due to the rough surface characteristics of the walls of drains.…”
Section: Fuzzy Logic System For Wall Collision Avoidancementioning
confidence: 99%
“…Furthermore, the dynamics of the robot vary with the wheel assembly reconfiguration. One of the advantages of the fuzzy logic controller is that it can perform well in scenarios where it has less knowledge of the underlying dynamics of the robot or the environment [ 36 , 37 , 38 , 39 ].…”
Section: Navigating In the Middle Of A Drainmentioning
confidence: 99%
“…Desde que o Sistema de Inferência Fuzzy Mamdani ou MFIS (do inglês, Membership Fuzzy Inference System) foi proposto, diversos problemas de difícil análise e formulac ¸ão matemática têm sido solucionados por meio de uma descric ¸ão linguística implementada na forma de regras baseadas no conhecimento do especialista, como na teoria de sistemas de controle [10], em identificac ¸ão de sistemas [11], em robótica [12], entre outros. O comportamento dinâmico do VSS pode ser modelado utilizando um MFIS para obtenc ¸ão de um bom desempenho do algoritmo NLMS independente de medidas estatísticas de alta ordem.…”
Section: Introduc ¸ãOunclassified