“…A vast number of published studies can be summarized with a selection of other anode candidates such as: (a) Ru (Sauvet and Fouletier, 2001;Bebelis et al, 2006;Caillot et al, 2007), (b) Cu (Slater and Irvine, 1999;Park et al, 2000), (c) Fluorite (e.g., Cu-CeO 2 -ScSZ; Ye et al, 2007), (d) Tungsten bronze (e.g., (Ba/Sr/Ca/La) 0.6 M x Nb 1−x O 3−δ , where M=Mg, Ni, Mn, Cr, Fe, In, Ti, Sn;Tao and Irvine, 2004), (e) Pyrochlore (e.g., Gd 2 Ti 2 O 7 ) anode materials (Goodenough and Huang, 2007;Sun and Stimming, 2007;Tsipis and Kharton, 2008), (f) LSCM (e.g., La 0.75 Sr 0.25 Cr 0.5 Mn 0.5 O 3−δ ) (Sfeir et al, 2001;Liu et al, 2002;Tao and Irvine, 2004;Ruiz-Morales et al, 2007), SrMoO 4 (Smith and Gross, 2011), and other complex perovskites (Xiao et al, 2010), such as double perovskites (e.g., Sr 2 Mg 1−x Mn x MoO 6−δ; Huang et al, 2006 or Sr 2 CoMoO 6; Zhang et al, 2011), chromites (Vashook et al, 2003), and titanates (Li X. et al, 2009). Although most of the above materials are characterized by high carbon resistance, nevertheless, in most of the cases their practical use is inhibited by the poor electrochemical or catalytic activity, the relatively low electronic conduction, the low thermal and chemical stability, the use of prohibitively expensive materials and/or the high cost of processing for their commercial use (Tsipis and Kharton, 2008;Niakolas et al, 2010).…”