With the rapid development of industry and the increasing demand for transportation, traditional sources of energy have been excessively consumed. Biodiesel as an alternative energy source has become a research focus. The most common method for biodiesel production is transesterification, in which lipid and low carbon alcohol are commonly used as raw materials, in the presence of a catalyst. In the process of transesterification, the performance of the catalyst is the key factor of the biodiesel yield. This paper reviews the recent research progress on homogeneous and heterogeneous catalysts in biodiesel production. The advantages and disadvantages of current homogeneous acid catalysts and homogeneous base catalysts are discussed, and heteropolyacid heterogeneous catalysts and biomass-derived base catalysts are described. The applications of the homogeneous and heterogeneous catalyst derivatives ionic liquids/deep eutectic solvents and nanocatalysts/magnetic catalysts in biodiesel production are reviewed. The mechanism and economic cost of current homogeneous acid catalysts and homogeneous base catalysts are also analyzed. The unique advantages of each type of catalyst are compared to better understand the microscopic details behind biodiesel. Finally, some challenges of current biodiesel catalysts are summarized, and future research directions are presented. This review will provide general and in-depth knowledge on the achievements, directions, and research priorities in developing novel homogeneous/heterogeneous catalysts for the green and cost-effective production of biodiesel.