Histone acetylation and phosphorylation destablizes nucleosome and chromatin structure. Relaxation of the chromatin fiber facilitates transcription. Coactivator complexes with histone acetyltransferase activity are recruited by transcription factors bound to enhancers or promoters. The recruited histone acetyltransferases may acetylate histone or nonhistone chromosomal proteins, resulting in the relaxation of chromatin structure. Alternatively, repressors recruit corepressor complexes with histone deacetylase activity, leading to condensation of chromatin.This review highlights the recent advances made in our understanding of the roles of histone acetyltransferases, histone deacetylases, histone kinases, and protein phosphatases in transcriptional activation and repression. Exciting reports revealing mechanistic connections between histone modifying activities and the RNA polymerase II machinery, the coupling of histone deacetylation and DNA methylation, the possible involvement of histone deacetylases in the organization of nuclear DNA, and the role of chromatin modulators in oncogenesis are discussed. J. Cell. Biochem. Suppls. 30/31:203-213, 1998. © 1998 Wiley-Liss, Inc.