We provide a new description of logarithmic topological André-Quillen homology in terms of the indecomposables of an augmented ring spectrum. The new description allows us to interpret logarithmic TAQ as an abstract cotangent complex, and leads to a base-change formula for logarithmic topological Hochschild homology. The latter is analogous to results of Weibel-Geller for Hochschild homology of discrete rings, and of McCarthy-Minasian and Mathew for topological Hochschild homology. For example, our results imply that logarithmic THH satisfies base-change for tamely ramified extensions of discrete valuation rings.