2022
DOI: 10.24330/ieja.1077664
|View full text |Cite
|
Sign up to set email alerts
|

A homological characterization of Q0-Prüfer v-multiplication rings

Abstract: Let $R$ be a commutative ring. An $R$-module $M$ is called a semi-regular $w$-flat module if $\Tor_1^R(R/I,M)$ is $\GV$-torsion for any finitely generated semi-regular ideal $I$. In this article, we show that the class of semi-regular $w$-flat modules is a covering class. Moreover, we introduce the semi-regular $w$-flat dimensions of $R$-modules and the $sr$-$w$-weak global dimensions of the commutative ring $R$. Utilizing these notions, we give some homological characterizations of $\WQ$-rings and $Q_0$-\Pv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?