We sought to define the landscape of alternative pre-mRNA splicing in prostate cancers and the relationship of exon choice to known cancer driver alterations. To do so, we compiled a metadataset composed of 876 RNA-sequencing (RNA-Seq) samples from five publicly available sources representing a range of prostate phenotypes from normal tissue to drug-resistant metastases. We subjected these samples to exon-level analysis with rMATS-turbo, purposebuilt software designed for large-scale analyses of splicing, and identified 13,149 high-confidence cassette exon events with variable incorporation across samples. We then developed a computational framework, pathway enrichment-guided activity study of alternative splicing (PEGASAS), to correlate transcriptional signatures of 50 different cancer driver pathways with these alternative splicing events. We discovered that Myc signaling was correlated with incorporation of a set of 1,039 cassette exons enriched in genes encoding RNA binding proteins. Using a human prostate epithelial transformation assay, we confirmed the Myc regulation of 147 of these exons, many of which introduced frameshifts or encoded premature stop codons. Our results connect changes in alternative pre-mRNA splicing to oncogenic alterations common in prostate and many other cancers. We also establish a role for Myc in regulating RNA splicing by controlling the incorporation of nonsense-mediated decay-determinant exons in genes encoding RNA binding proteins.alternative splicing | prostate cancer | Myc | rMATS | PEGASAS A lternative pre-mRNA splicing is a regulated process that governs exon choice and greatly diversifies the proteome. It is an essential process that contributes to development, tissue specification, and homeostasis and is often dysregulated in disease states (1). In cancer, this includes growth signaling, epithelial-tomesenchymal transition, resistance to apoptosis, and treatment resistance (2). In prostate cancer, our area of interest, the most notable splicing change is the emergence of the ligand-independent androgen receptor ARV7 isoform in response to hormone deprivation (3). Other examples include proangiogenic splice variants of VEGFA (4), tumorigenic variants of the transcription factors ERG and KLF6 (5, 6), and antiapoptotic splicing of BCL2L2 (7, 8). However, the intersection of upstream oncogenic signaling, pre-mRNA splicing, and the biological processes affected by those splicing events has not been defined at a global level.Prostate cancers progress from hormone-responsive, localized disease to hormone-independent, metastatic disease accompanied by changes in gene expression and mutations that confer cellautonomous growth and therapeutic resistance (9). The study of disease progression from primary prostate adenocarcinoma (PrAd) to metastatic, castration-resistant prostate cancer (mCRPC) and treatment-related neuroendocrine prostate cancer (NEPC) has been aided by large-scale genomic and transcriptomic studies of patient samples representing each form of the disease (10-13). E...