Inflammasomes comprise a group of protein complexes with fundamental roles in the induction of inflammation. Upon sensing stress factors, their assembly induces the activation and release of the pro-inflammatory cytokines interleukin (IL)-1β and -18 and a lytic type of cell death, termed pyroptosis. Recently, CARD8 has joined the group of inflammasome sensors. The carboxy-terminal part of CARD8, consisting of a function-to-find-domain (FIIND) and a caspase activation and recruitment domain (CARD), resembles that of NLR family pyrin domain containing 1 (NLRP1), which is recognized as the main inflammasome sensor in human keratinocytes. The interaction with dipeptidyl peptidases 8 and 9 (DPP8/9) represents an activation checkpoint for both sensors. CARD8 and NLRP1 are activated by viral protease activity targeting their amino-terminal region. However, CARD8 also has some unique features compared to the established inflammasome sensors. Activation of CARD8 occurs independently of the inflammasome adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC), leading mainly to pyroptosis rather than the activation and secretion of pro-inflammatory cytokines. CARD8 was also shown to have anti-inflammatory and anti-apoptotic activity. It interacts with, and inhibits, several proteins involved in inflammation and cell death, such as the inflammasome sensor NLRP3, CARD-containing proteins caspase-1 and -9, nucleotide-binding oligomerization domain containing 2 (NOD2), or nuclear factor kappa B (NF-κB). Single nucleotide polymorphisms (SNPs) of CARD8, some of them occurring at high frequencies, are associated with various inflammatory diseases. The molecular mechanisms underlying the different pro- and anti-inflammatory activities of CARD8 are incompletely understood. Alternative splicing leads to the generation of multiple CARD8 protein isoforms. Although the functional properties of these isoforms are poorly characterized, there is evidence that suggests isoform-specific roles. The characterization of the functions of these isoforms, together with their cell- and disease-specific expression, might be the key to a better understanding of CARD8’s different roles in inflammation and inflammatory diseases.