Ricin toxin’s B subunit (RTB) is a multifunctional galactose (Gal)-/N-acetylgalactosamine (GalNac)-specific lectin that promotes efficient uptake and intracellular trafficking of ricin’s ribosome-inactivating subunit (RTA) into mammalian cells. Structurally, RTB consists of two globular domains (RTB-D1, RTB-D2), each divided into three homologous sub-domains (α, β, γ). The two carbohydrate recognition domains (CRDs) are situated on opposite sides of RTB (sub-domains 1α and 2γ) and function non-cooperatively. Previous studies have revealed two distinct classes of toxin-neutralizing, anti-RTB monoclonal antibodies (mAbs). Type I mAbs, exemplified by SylH3, inhibit (∼90%) toxin attachment to cell surfaces, while type II mAbs, epitomized by 24B11, interfere with intracellular toxin transport between the plasma membrane and the trans-Golgi network (TGN). Localizing the epitopes recognized by these two classes of mAbs has proven difficult, in part because of RTB’s duplicative structure. To circumvent this problem, full-length RTB or the two individual domains, RTB-D1 and RTB-D2, were expressed as pIII fusion proteins on the surface of filamentous phage M13 and subsequently used as “bait” in mAb capture assays. The results indicated that SylH3 captured RTB-D1, while 24B11 captured RTB-D2. Analysis of additional toxin-neutralizing and non-neutralizing mAbs along with single chain antibodies (VHHs) known to compete with SylH3 or 24B11 confirmed these domain assignments. These results not only indicate that so-called type I and type II mAbs segregate on the basis of domain specificity, but suggest that RTB’s two domains may contribute to distinct steps in the intoxication pathway.