The construction of intelligent logistics by intelligent wireless sensing is a modern trend. Hence, this study uses the multistate flow network (MFN) to explore the actual environment of logistics delivery and to consider the different types of transportation routes available for logistics trucks in today’s practical environment, which have been neglected in previous studies. Two road types, namely highways and slow roads, with different speed limits are explored. The speed of the truck is fast on the highway, so the completion time of the single delivery is, of course, fast. However, it is also because of its high speed that it is subject to many other conditions. For example, if the turning angle of the truck is too large, there will be a risk of the truck overturning, which is a quite serious and important problem that must be included as a constraint. Moreover, highways limit the weight of trucks, so this limit is also included as a constraint. On the other hand, if the truck is driving on a slow road, where its speed is much slower than that of a highway, it is not limited by the turning angle. Nevertheless, regarding the weight capacity of trucks, although the same type of trucks running on slow roads can carry a weight capacity that is higher than the load weight limit of driving on the highway, slow roads also have a load weight limit. In addition to a truck’s aforementioned turning angle and load weight capacity, in today’s logistics delivery, time efficiency is extremely important, so the delivery completion time is also included as a constraint. Therefore, this study uses the improved d-MP method to study the reliability of logistics delivery in trucks driving on two types of roads under constraints to help enhance the construction of intelligent logistics with intelligent wireless sensing. An illustrative example in an actual environment is introduced.