2024
DOI: 10.1002/itl2.534
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid approach for malware detection in SDN‐enabled IoT scenarios

Cristian H. M. Souza,
Carlos H. Arima

Abstract: Malware presents a significant threat to computer systems security, especially in ARM and MIPS architectures, driven by the rise of the internet of things (IoT). This paper introduces Heimdall, a hybrid approach that integrates YARA signatures and machine learning in programmable switches for efficient malware detection in SDN‐enabled IoT environments. The machine learning classifier achieved an accuracy of 99.33% against the IoT‐23 dataset. When evaluated in an emulated environment with real malware samples, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 6 publications
0
0
0
Order By: Relevance