Abstract:Stock liquidity forecasting is critical for investors, issuers, and financial market regulators. The object of this study is to propose a method capable of accurately predicting the liquidity of stocks. The few studies on stock liquidity forecasting have focused on single models such as Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors, the nonlinear autoregressive network with exogenous input, and Deep Learning. A new trend in forecasting which attempts to combine several approaches is… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.