A unified approach for the numerical simulation of vowels is presented, which accounts for the self-oscillations of the vocal folds including contact, the generation of acoustic waves and their propagation through the vocal tract, and the sound emission outwards the mouth. A monolithic incompressible fluid-structure interaction model is used to simulate the interaction between the glottal jet and the vocal folds, whereas the contact model is addressed by means of a level set application of the Eikonal equation. The coupling with acoustics is done through an acoustic analogy stemming from a simplification of the acoustic perturbation equations. This coupling is one-way in the sense that there is no feedback from the acoustics to the flow and mechanical fields.All the involved equations are solved together at each time step and in a single computational run, using the finite element method (FEM). As an application, the production of vowel [i] has been addressed. Despite the complexity of all physical phenomena to be simulated simultaneously, which requires resorting to massively parallel computing, the formant locations of vowel [i] have been well recovered.