2016
DOI: 10.5121/ijdkp.2016.6206
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid Classification Algorithm to Classify Engineering Students Problems and Perks

Abstract: ABSTRACT

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 17 publications
0
2
0
1
Order By: Relevance
“…If input data comes from SNs, preprocessing requires other several steps, such as online text cleaning (like removing URLs, HTML tags or the Retweets tag [RT]), expanding abbreviation or acronyms, handling or removing emoticons, and replacing or removing repeated characters like the “o” and the “p” and “y” in the following words, “ coooooool” or “ happyyyyyyyyyyyyyyyyy” (Brody & Diakopoulos, ; Desai & Mehta, ; Go, Bhayani, & Huang, ; Haddi, Liu, & Shi, ).…”
Section: Sentiment Analysis Methodsmentioning
confidence: 99%
“…If input data comes from SNs, preprocessing requires other several steps, such as online text cleaning (like removing URLs, HTML tags or the Retweets tag [RT]), expanding abbreviation or acronyms, handling or removing emoticons, and replacing or removing repeated characters like the “o” and the “p” and “y” in the following words, “ coooooool” or “ happyyyyyyyyyyyyyyyyy” (Brody & Diakopoulos, ; Desai & Mehta, ; Go, Bhayani, & Huang, ; Haddi, Liu, & Shi, ).…”
Section: Sentiment Analysis Methodsmentioning
confidence: 99%
“…Then, they have evaluated a number of ML approaches and identified those most suitable to classifying public sentiment towards gun violence in light of the Sandy Hook school shooting. (Desai & Mehta, 2016) have proposed a novel Hybrid Classification Algorithm (HCA) for descriptive sentiment analysis to understand students' problems and perks deeply. For this, the authors have integrated both subjective analysis and DM techniques to make the process descriptive.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Para destacar los trabajos relacionados con el presente estudio, se elaboró una tabla comparativa que permite identificar, por una parte, las tareas de la extracción de datos, las técnicas utilizadas para el análisis de datos, así como el propósito de cada uno. De los 14 estudios, diez de ellos utilizan Twitter como fuente para extraer la información, a través de la búsqueda de términos, hashtags o temas relacionados a problemas de ingeniería (Abdelhamid et al, 2020;Chen et al, 2014;Desai y Mehta, 2016;Greeshma y Veigas, 2020;Hasan et al, 2014;Ingole et al, 2018;Joshi y Sharma, 2021;Patel y Mistry, 2015;Patil y Kulkarni, 2018;Sambhaji, 2021). Tres de ellos tienen como datos de entrada, las huellas digitales de los estudiantes (Azcona et al, 2019;Blikstein, 2011;Blikstein et al, 2014) y un estudio extrae información de un blog (T. Oanh y Thanh, 2017).…”
Section: Introductionunclassified