2022
DOI: 10.3390/rs14194853
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid Classification of Imbalanced Hyperspectral Images Using ADASYN and Enhanced Deep Subsampled Multi-Grained Cascaded Forest

Abstract: Hyperspectral image (HSI) analysis generally suffers from issues such as high dimensionality, imbalanced sample sets for different classes, and the choice of classifiers for artificially balanced datasets. The existing conventional data imbalance removal techniques and forest classifiers lack a more efficient approach to dealing with the aforementioned issues. In this study, we propose a novel hybrid methodology ADASYN-enhanced subsampled multi-grained cascade forest (ADA-Es-gcForest) which comprises four fold… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
1
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(4 citation statements)
references
References 27 publications
0
3
0
1
Order By: Relevance
“…Para isso, o ADASYN utiliza uma distribuic ¸ão de densidade como critério para decidir automaticamente o número de amostras sintéticas que precisam ser geradas para cada exemplo minoritário. Como resultado, os dados sintéticos adicionais são gerados para exemplos da classes minoritária que são mais difíceis de aprender [30].…”
Section: Adasynunclassified
“…Para isso, o ADASYN utiliza uma distribuic ¸ão de densidade como critério para decidir automaticamente o número de amostras sintéticas que precisam ser geradas para cada exemplo minoritário. Como resultado, os dados sintéticos adicionais são gerados para exemplos da classes minoritária que são mais difíceis de aprender [30].…”
Section: Adasynunclassified
“…Remote sensing data classification has research significance in the fields of urban planning , mining exploration, and agriculture [1][2][3][4][5]. In recent years, with the rapid development of sensor technology, a variety of remote sensing data sources have been provided to support remote sensing data classification tasks.…”
Section: Introductionmentioning
confidence: 99%
“…Remote sensing data classification has important research significance in the fields of urban planning , mining exploration, and agriculture [1][2][3][4][5]. In recent years, with the rapid development of sensor technology, a variety of remote sensing data sources have been provided to support remote sensing data classification tasks.…”
Section: Introductionmentioning
confidence: 99%