2023
DOI: 10.3389/fmars.2023.1112336
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid deep learning model for predicting the Kuroshio path south of Japan

Abstract: At present, many prediction models based on deep learning methods have been widely used in ocean prediction with satisfactory results. However, few deep learning models are used to predict the Kuroshio path south of Japan. In this study, a hybrid deep learning prediction model is constructed based on the long short-term memory (LSTM) neural network, combined with the complex empirical orthogonal function (CEOF) and bivariate empirical mode decomposition (BEMD), called CEOF-BEMD-LSTM. We train the model by usin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?