2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE) 2021
DOI: 10.1109/iccece51280.2021.9342110
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid Deep Learning Model For Online Fraud Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(8 citation statements)
references
References 7 publications
0
6
0
2
Order By: Relevance
“…Furthermore, Kewei et al [159] proposed a deep learningbased ensemble for detecting online fraud. The method combined the binary cross-entropy (BCE) loss and Focal loss to obtain the proposed model's loss function.…”
Section: Ensemble Learning Applications In Recent Literaturementioning
confidence: 99%
“…Furthermore, Kewei et al [159] proposed a deep learningbased ensemble for detecting online fraud. The method combined the binary cross-entropy (BCE) loss and Focal loss to obtain the proposed model's loss function.…”
Section: Ensemble Learning Applications In Recent Literaturementioning
confidence: 99%
“…Na Tabela 2, é possível observar os resultados apresentados pelo melhor modelo encontrado pela abordagem proposta para cada um dos cinco algoritmos de classificac ¸ão investigados (Logistic Regression, Decision Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF) e XGBoost, bem como os resultados reportados pelos principais trabalhos relacionados: [Deng et al 2021], [Kewei et al 2021], [Nguyen et al 2022], [Chen e Han 2021], [Ni et al 2023] e [Bakhtiari, Nasiri e Vahidi 2023]. Vale destacar que todos esses trabalhos utilizaram o conjunto de dados IEE-CIS Fraud Detection.…”
Section: Discussão Dos Resultadosunclassified
“…No estudo [Kewei et al 2021], técnicas de aprendizado profundo e engenharia de atributos foram combinadas para detectar fraudes em transac ¸ões online. A adic ¸ão de novos atributos com base em medidas estatísticas e informac ¸ões temporais resultou em um modelo mais eficiente, reduzindo a dimensionalidade do conjunto de dados original de 435 atributos.…”
Section: Trabalhos Relacionadosunclassified
“…The model is trained and evaluated on the IEEE-CIS fraud dataset. Their experiments show that the model outperforms traditional machine-learning-based methods like Bayes and SVM on the used dataset [18].…”
Section: Related Workmentioning
confidence: 99%