Electric scooter sharing mobility services have recently spread in major cities all around the world. However, the bad parking behavior of users has become a major source of issues, provoking accidents and compromising urban decorum of public areas. Reducing wild parking habits can be pursued by setting reserved parking spaces. In this work, we consider the problem faced by a municipality that hosts e-scooter sharing services and must choose which locations in its territory may be rented as reserved parking lots to sharing companies, with the aim of maximizing a return on renting and while taking into account spatial consideration and parking needs of local residents. Since this problem may result difficult to solve even for a state-of-the-art optimization software, we propose a hybrid metaheuristic solution algorithm combining a quantum-inspired ant colony optimization algorithm with an exact large neighborhood search. Results of computational tests considering realistic instances referring to the Italian capital city of Rome show the superior performance of the proposed hybrid metaheuristic.