2023
DOI: 10.37391/ijeer.110244
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid Feature Selection Approach based on Random Forest and Particle Swarm Optimization for IoT Network Traffic Analysis

Abstract: The complexity and volume of network traffic has increased significantly due to the emergence of the “Internet of Things” (IoT). The classification accuracy of the network traffic is dependent on the most pertinent features. In this paper, we present a hybrid feature selection method that takes into account the optimization of Particle Swarms (PSO) and Random Forests. The data collected by the security firm, CIC-IDS2017, contains a large number of attacks and traffic instances. To improve the classification ac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 26 publications
0
0
0
Order By: Relevance