2019
DOI: 10.3906/elk-1812-18
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid feature-selection approach for finding the digital evidence of webapplication attacks

Abstract: The most critical challenge of web attack forensic investigations is the sheer amount of data and level of complexity. Machine learning technology might be an efficient solution for web attack analysis and investigation.Consequently, machine learning applications have been applied in various areas of information security and digital forensics, and have improved over time. Moreover, feature selection is a crucial step in machine learning; in fact, selecting an optimal feature subset could enhance the accuracy a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 28 publications
(34 reference statements)
0
4
0
2
Order By: Relevance
“…Some additional notations are used to distinguish between the variables of the hidden layers as follows: superscripts to define the number of the layer, and subscripts to define the number of the neurons in the current layer (e.g., w 2 1 , means the weight value for neuron number 1 in layer number 2) [34]. The pseudo-code of the original MLP algorithm is displayed in Algorithm 1 [36].…”
Section: Preliminariesmentioning
confidence: 99%
See 2 more Smart Citations
“…Some additional notations are used to distinguish between the variables of the hidden layers as follows: superscripts to define the number of the layer, and subscripts to define the number of the neurons in the current layer (e.g., w 2 1 , means the weight value for neuron number 1 in layer number 2) [34]. The pseudo-code of the original MLP algorithm is displayed in Algorithm 1 [36].…”
Section: Preliminariesmentioning
confidence: 99%
“…In general, the traditional feature selection approaches are classified into three types; filter approach, wrapper approach, and embedded approach, as shown in Fig. 1 [2]. Filter methods are classifier-independent, where they select the features' subsets based on specific given criteria [3].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Araştırma neticesinde adli bilişim alanı kapsamında derin öğrenme algoritmalarının yoğun olarak metin verisi [5], ses verisi [6], video [7][8][9] ve resim [3], [10][11][12][13][14][15][16][17][18][19] verileri analizinde kullanıldığı tespit edilmiştir. Söz konusu çalışma alanlarına ek olarak yöntem iyileştirme [20,21], süreç iyileştirme ve otomasyon [22,23], saldırı tespit ve güvenlik log analizi [2], [24][25], derin öğrenme algoritmalarının yaygın olarak kullanıldığı diğer alanlardır.…”
Section: Li̇teratür Araştirmasiunclassified
“…Yöntem iyileştirme çalışmaları kapsamında ise makine öğrenmesinin, internet sitesi saldırılarının analizi ve incelenmesi süreçlerinde etkili bir yöntem olarak kullanılabileceği önerilmiştir [20]. Çalışmada, makine öğrenmesi aşamalarında özellik seçiminin kritik olduğu ve doğru parametrelerin seçilmesi durumunda modelin performansının artacağı vurgulanmıştır.…”
Section: Li̇teratür Araştirmasiunclassified