The social spider algorithm (SSA) is a new heuristic algorithm created on spider behaviors to solve continuous optimization problems. In this study, SSA is used in order to minimize a simplified model of the energy function of the molecule. The Molecular potential energy function problem is one of the most important real-life problems. The Molecular potential energy function problem attempts to predict the 3D structure of a protein. SSA is developed by various techniques (Crossover-mutation and Gbest convergence-silent spider techniques) and SSA is called Improved SSA (ISSA). By these techniques, the exploration and exploitation capabilities of SSA in the continuous search space are improved. The general performances of SSA and ISSA are tested on low-scaled and large-scaled thirteen benchmark functions and obtained results are compared with each other. Wilcoxon signed-rank test is applied to SSA and ISSA results. Then, the general performance of the SSA and ISSA is tested on a simplified model of the molecule for different dimensions. Also, the performance of the ISSA is compared to various state-of-art algorithms in the literature. The results showed the superiority of the performance of ISSA.