2023
DOI: 10.1002/for.2978
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid forecasting model based on deep learning feature extraction and statistical arbitrage methods for stock trading strategies

Abstract: The time series data of financial markets are nonlinear, owing to rapid data accumulation. Thus, research on stock price prediction has always been a challenge. This study proposes a quantitative trading strategy that combines basic quantitative trading rules and deep learning methods to help investors realize arbitrage. We combine basic quantitative trading arbitrage with deep learning frameworks to fully extract market characteristics and develop trading strategies for investors. The hybrid forecasting model… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 57 publications
0
0
0
Order By: Relevance