2019
DOI: 10.1007/s10489-019-01551-z
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid fuzzy filtering - fuzzy thresholding technique for region of interest detection in noisy images

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 51 publications
0
3
0
1
Order By: Relevance
“…In order to determine the color similarity between pixels fuzzy T-metric τ is formulated as (see (2) and Example 1)…”
Section: Filtering Images By Using Fuzzy Metricsmentioning
confidence: 99%
See 1 more Smart Citation
“…In order to determine the color similarity between pixels fuzzy T-metric τ is formulated as (see (2) and Example 1)…”
Section: Filtering Images By Using Fuzzy Metricsmentioning
confidence: 99%
“…Fuzzy metric and fuzzy filtering have been used successfully in many engineering problems [2], [17]. Valentin et al [9] constructed a fuzzy metric that at the same time looks at two different distance criteria and used it to filter noise in images.…”
Section: Introductionmentioning
confidence: 99%
“…Eşikleme, görüntü segmentasyonu için en önemli ve etkili araçlardan biridir. Eşikleme, video sıkıştırmada, [1,2], görüntü gürültü gidermede [3], belge işlemede [4] ve hedef tanımada [5] yaygın olarak kullanılan görüntü bölütlemenin ana yöntemi ve önemli bir dalıdır. Eşikleme işlemi bir eşik (th) değeri alarak çalıştığı için, yoğunluk değeri 'th' değerinden yüksek olan pikseller birinci sınıf olarak etiketlenirken geri kalanlar ikinci sınıf olarak etiketlenir [6].…”
Section: Gi̇ri̇ş (Introduction)unclassified
“…Using fuzzy thresholding, Bandyopadhyay et al [10] detected the noisy region of the image. The fuzzy T-metric is another algorithm that was introduced by Ralevic et al [11] and showed good results in reducing image noise.…”
Section: Introductionmentioning
confidence: 99%