This paper introduces a practical navigation approach for nonholonomic Unmanned Aerial Vehicles (UAVs) in 3D environment settings with numerous stationary and dynamic obstacles. To achieve the intended outcome, Dynamic Programming (DP) is combined with a reactive control algorithm. The DP allows the UAVs to navigate among known static barriers and obstacles. Additionally, the reactive controller uses data from the onboard sensor to avoid unforeseen obstacles. The proposed strategy is illustrated through computer simulation results. In simulations, the UAV successfully navigates around dynamic obstacles while maintaining its route to the target. These results highlight the ability of our proposed approach to ensure safe and efficient UAV navigation in complex and obstacle-laden environments.