2017
DOI: 10.2166/hydro.2017.013
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid linear–nonlinear approach to predict the monthly rainfall over the Urmia Lake watershed using wavelet-SARIMAX-LSSVM conjugated model

Abstract: The present study aimed to develop a hybrid model to predict the rainfall time series of Urmia Lake watershed. For this purpose, a model based on discrete wavelet transform, ARIMAX and least squares support vector machine (LSSVM) (W-S-LSSVM) was developed. The proposed model was designed to handle linear, nonlinear and seasonality of rainfall time series. In the proposed model, time series were decomposed into sub-series (approximation (a) and details (d)). Next, the sub-series were predicted separately. In th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
8
1
1

Relationship

0
10

Authors

Journals

citations
Cited by 49 publications
(7 citation statements)
references
References 36 publications
0
5
0
Order By: Relevance
“…The existing research on hybrid models can be divided into two directions 13 . First, the original time series is decomposed, each part is fitted individually using different learning models, and then the results are integrated to obtain the final one 14 . Second, the linear model has been applied to mine the linear pattern.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The existing research on hybrid models can be divided into two directions 13 . First, the original time series is decomposed, each part is fitted individually using different learning models, and then the results are integrated to obtain the final one 14 . Second, the linear model has been applied to mine the linear pattern.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The performance of the SARIMAX model is considered better than that of the classical ARIMA model (Vagropoulos et al, 2016), though, in the past, natural disasters like earthquakes and hydroclimatic events have also been forecasted by the latter (Amei et al, 2012;Islam et al, 2021). The existing studies have highlighted the effectiveness of SARIMAX in fields like electricity, rainfall, traffic, and sales, to name a few (Elamin & Fukushige, 2018;Farajzadeh & Alizadeh, 2018). However, for forecasting cyclones, so far, its application seems to have been limited.…”
Section: Model Formulationmentioning
confidence: 99%
“…Sumado a esto, se han llevado a cabo diferentes estudios sobre la evolución espacial y temporal de la precipitación (Lu et al, 2019). Como ejemplo, algunos de los modelos más importantes son el modelo ARIMA que combina redes neuronales para predecir la lluvia por mes, el modelo SA-RIMA que permite el análisis de lluvia utilizando la estacionalidad en la serie de tiempo y el test de Dickey Fuller para determinar la estacionariedad (Jibril et al, 2017) y finalmente el modelo SARIMAX para predecir subseries utilizando el método de wavelet para obtener información sobre el tiempo y la frecuencia de la señal (Farajzadeh & Alizadeh, 2018). Este trabajo contribuye al pronóstico de la precipitación en la ciudad de Manizales, donde los resultados se utilizan para construir un sistema de detección temprana de deslizamientos de tierra.…”
Section: Introductionunclassified