With the rapid development of information technology and globalization of economy, financial data are being generated and collected at an unprecedented rate. Consequently, there has been a dire need of automated methods for effective and proficient utilization of a substantial amount of financial data to help in investment planning and decision-making. Data mining methods have been employed to discover hidden patterns and estimate future tendencies in financial markets. In this article, an improved macroeconomic growth prediction algorithm based on data mining and fuzzy correlation analysis is presented. This study analyzes the sequence of economic characteristics, reorganizes the spatial structure of economic characteristics, and integrates the statistical information of economic data. Using the optimized Apriori algorithm, the association rules between macroeconomic data are generated. Distinct features are extracted according to association rules using the joint distribution characteristic quantity of macroeconomic time series. Moreover, the Doppler parameter of macroeconomic time series growth prediction is calculated, and the residual analysis method of the regression model is used to predict the growth of macroeconomic data. Experimental results show that the proposed algorithm has better adaptability, less computation time, and higher prediction accuracy of economic data mining.