“…However, in infinite dimensional Hilbert spaces, the extragradient method only converges weakly. In recent years, the extragradient method has received a lot of attention, see, for example, [10,14,15,24,30,31] and the references therein. Nadezhkina and Takahashi [32] introduced the following hybrid extragradient method ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ y n = P K (x n − λA(x n )), z n = P K (x n − λA(y n )), C n = {z ∈ C : ||z − z n || ≤ ||z − x n ||} , Q n = {z ∈ C : x 0 − x n , z − x n ≤ 0} , x n+1 = P C n ∩Q n (x 0 ), (4) where λ ∈ (0, 1 L ).…”