2020
DOI: 10.3906/elk-1904-180
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid model based on the convolutional neural network model and artificial bee colony or particle swarm optimization-based iterative thresholding for the detection of bruised apples

Abstract: In this study, apple images taken with near-infrared (NIR) cameras were classified as bruised and healthy objects using iterative thresholding approaches based on artificial bee colony (ABC) and particle swarm optimization (PSO) algorithms supported by a convolutional neural network (CNN) deep learning model. The proposed model includes the following stages: image acquisition, image preprocessing, the segmentation of anatomical regions (stemcalyx regions) to be discarded, the detection of bruised areas on the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 24 publications
0
4
0
1
Order By: Relevance
“…Veri kümesine ait kapsamlı özellikleri. Derin öğrenme yaklaşımları, verilerin etiketli ve etiketsiz olma duruma göre sınıflandırılır [28]- [34]. Verinin etiketli bir formu varsa o zaman denetimli öğrenme, etiketsiz bir formu olursa o zaman ise denetimsiz öğrenme ve son olarak ise hem etiketli hem de etiketsiz veri kullanılıyorsa yarı denetimli öğrenme diye sınıflandırılır.…”
Section: Derin öğRenme Yöntemleriunclassified
“…Veri kümesine ait kapsamlı özellikleri. Derin öğrenme yaklaşımları, verilerin etiketli ve etiketsiz olma duruma göre sınıflandırılır [28]- [34]. Verinin etiketli bir formu varsa o zaman denetimli öğrenme, etiketsiz bir formu olursa o zaman ise denetimsiz öğrenme ve son olarak ise hem etiketli hem de etiketsiz veri kullanılıyorsa yarı denetimli öğrenme diye sınıflandırılır.…”
Section: Derin öğRenme Yöntemleriunclassified
“…In recent years, many imaging techniques have been applied to the non-destructive detection of bruises in fruits and vegetables, such as nuclear magnetic resonance (NMR) [10], X-ray imaging technology [11][12][13], and hyperspectral techniques [14][15][16][17][18]. However, the NMR has not been widely used due to its high cost.…”
Section: Introductionmentioning
confidence: 99%
“…The research mentioned above primarily focused on studying the equatorial surface of apples, without considering the interference caused by the apple's calyx and stem in the actual production process for detection [18]. This may lead to a decrease in the accuracy of bruise detection in apples.…”
Section: Introductionmentioning
confidence: 99%
“…These methods have become important in numerous research areas, such as image processing and data classi cation. As a result, machine learning and deep learning methods have been applied in various elds, including medicine, industrial applications, energy systems, and agriculture [3,4,5]. Farmers can use machine learning and deep learning-based applications to monitor crop production processes in natural and greenhouse environments.…”
Section: Introductionmentioning
confidence: 99%