2022
DOI: 10.4018/ijcvip.296585
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid Moth-Flame Optimization Technique for Feature Selection in Brain Image Classification and Image Denoising by Improved Log Gabor Filter

Abstract: In brain image classification, feature set reduction is essential to build an optimised feature subset that will lead to precise measurement. In this paper, an improved technique for feature selection by Moth Flame Optimization with Opposition Based Learning (OBL) and Simulated Annealing (OB-MFOSA) is proposed. The OBL strategy is used to create the optimum initial solution, while Simulated Annealing improves the search space. The proposed OB-MFOSA shows improved performance than other well-known existing algo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?