“…Traditional optimization methods have several drawbacks when solving complex and complicated problems that require considerable time and cost optimization. Metaheuristic algorithms have been proven capable of handling a variety of continuous and discrete optimization problems [46] in a wide range of applications including engineering [47][48][49], industry [50,51], image processing and segmentation [52][53][54], scheduling [55,56], photovoltaic modeling [57,58], optimal power flow [59,60], power and energy management [61,62], planning and routing problems [63][64][65], intrusion detection [66,67], feature selection [68][69][70][71][72], spam detection [73,74], medical diagnosis [75][76][77], quality monitoring [78], community detection [79], and global optimization [80][81][82]. In the following, some representative metaheuristic algorithms from the swarm intelligence category used in our experiments are described.…”