A Hybrid Neural Network‐Based Improved PSO Algorithm for Gas Turbine Emissions Prediction
Samar Taha Yousif,
Firas Basim Ismail,
Ammar Al‐Bazi
Abstract:In gas‐fired power plants, emissions may reduce turbine blade rotation, thus decreasing power output. This study proposes a hybrid model integrating the Feed forward Neural Network (FFNN) model and Particle Swarm Optimization (PSO) algorithm to predict gas emissions from natural gas power plants. The FFNN predicts gas turbine nitrogen oxides (NOx) and carbon monoxide (CO) emissions, while the PSO optimizes FFNN weights, improving prediction accuracy. The PSO adopts a unique random number selection strategy, in… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.