2021
DOI: 10.1016/j.engappai.2021.104418
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid particle swarm optimization with crisscross learning strategy

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
10
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 38 publications
(12 citation statements)
references
References 59 publications
0
10
0
2
Order By: Relevance
“…BAS is a global optimization method inspired by the foraging behavior of longhorn beetles. Different from the classic particle swarm optimization (PSO) (Liang et al 2021 ) and gravitational search algorithm (GSA) (Gao et al 2021a ), BAS algorithm can converge to the global optimization solution by only using one particle, which makes BAS simple and fast as well as easy to implement (Li et al 2020 ). The basic BAS defines the position of the beetle as a vector at the epoch t .…”
Section: The Proposed Wqi and Wqimin Modelmentioning
confidence: 99%
“…BAS is a global optimization method inspired by the foraging behavior of longhorn beetles. Different from the classic particle swarm optimization (PSO) (Liang et al 2021 ) and gravitational search algorithm (GSA) (Gao et al 2021a ), BAS algorithm can converge to the global optimization solution by only using one particle, which makes BAS simple and fast as well as easy to implement (Li et al 2020 ). The basic BAS defines the position of the beetle as a vector at the epoch t .…”
Section: The Proposed Wqi and Wqimin Modelmentioning
confidence: 99%
“…( To validate the performance, the proposed enhanced BAS is compared with standard BAS, particle swarm optimization (PSO) [34] and gravitational search algorithm (GSA) [35]. Figure 10 shows the convergence rates of these algorithms for building WQImin models on sampling point 1.…”
Section: The Performance Of the Enhanced Bas Based Wqiminmentioning
confidence: 99%
“…Следует отметить, что это также новые гибридные модели, связанные с прогнозированием загрязнения воздуха, особенно в целях прогнозирования PM 2.5 . Основные принципы алгоритмов PSO, GA и ABC представлены в следующих исследованиях [49][50][51][52][53][54][55][56][57][58][59][60][61]. Стоит также отметить, что в данном исследовании роль PSO, GA и ABC аналогична роли оптимизатора HGS, а разработка моделей PSO-FLNN, GA-FLNN и ABC-FLNN аналогична разработке модели HGS-FLNN.…”
Section: Sensorsunclassified