Oilfield Sewage System Scheduling is a complicated, large-scale, nonlinear system problem with multiple variables. The complexity of the sewage system pipeline network connection grows along with the ongoing building of oilfield stations, and the shortcomings of the sewage system water quantity scheduling program based on human experience decision-making become increasingly apparent. The key to solving this problem is to realize the digital and intelligent scheduling of sewage systems. Taking the sewage system of an oil production plant in Daqing oilfield as the research object, the water scheduling model of the sewage system is established in this paper. Aiming at the complex nonlinear characteristics of the model, the Levy flight speed updating operator, the adaptive stochastic offset operator, and the Brownian motion selection optimization operator are established by taking advantage of the particle swarm optimization (PSO) and the cuckoo search (CS) algorithm. Based on these operators, a hybrid PSO-CS algorithm is proposed, which jumps out of the local optimum and has a strong global search capability. Comparing PSO-CS with other algorithms on the CEC2022 test set, it was found that the PSO-CS algorithm ranked first in all 12 test functions, proving the excellent solving performance of the PSO-CS algorithm. Finally, the PSO-CS is applied to solve a water scheduling model for the sewage system of an oil production plant in Daqing Oilfield. It is found that the scheduling plan optimized by PSO-CS has a 100% water supply rate to the downstream water injection station, and the total energy consumption of the scheduling plan on the same day is reduced from 879.95 × 106 m5/d to 712.84 × 106 m5/d, which is a 19% reduction in energy consumption. The number of water balance stations in the sewage station increased by 7, which effectively improved the water resource utilization rate of the sewage station.