Human-machine interfaces (HMI) facilitate communication between humans and machines, and their importance has increased in modern technology. However, traditional HMIs are often static and do not adapt to individual user preferences or behavior. Adaptive User Interfaces (AUIs) have become increasingly important in providing personalized user experiences. Machine learning techniques have gained traction in User Experience (UX) research to provide smart adaptations that can reduce user cognitive load. This paper presents an ongoing exploration of a method for generating adaptive user interfaces by analyzing user interactions and contextual data. It also provides an illustrative example using Markov chains to predict the next step for users interacting with an app for an industrial mixing machine. Furthermore, the paper conducts an offline evaluation of the approach, focusing on the precision of the recommendations. The study emphasizes the importance of incorporating user interactions and contextual data into the design of adaptive HMIs, while acknowledging the existing challenges and potential benefits.