Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This work examined the influence of UV-A light modulation on the photocatalytic process coadjuvated with H2O2 to mineralize phenol in an aqueous solution. A fixed-bed batch photocatalytic reactor with a flat-plate geometry, irradiated by UV-A LEDs, was employed. The successful deposition of commercial TiO2 PC105 on a steel plate (SP) was achieved, and the structured photocatalyst was characterized using Raman spectroscopy, specific surface area (SSA) measurements, and UV–vis DRS analysis. These analyses confirmed the formation of a titania coating in the anatase phase with a bandgap energy of 3.25 eV. Various LED-dimming techniques, with both fixed and variable duty cycle values, were tested to evaluate the stability of the photocatalyst’s activity and the influence of operating parameters during the mineralization of 450 mL of a phenol solution. The optimal operating parameters were identified as an initial phenol concentration of 10 ppm, a hydrogen peroxide dosage of 0.208 g L−1, and triangular variable duty cycle light modulation. Under these conditions, the highest apparent phenol degradation kinetic constant (0.39 min−1) and the total mineralization were achieved. Finally, the energy consumption for mineralizing 90% phenol in one cubic meter of treated water was determined, showing the greatest energy savings with triangular light modulation.
This work examined the influence of UV-A light modulation on the photocatalytic process coadjuvated with H2O2 to mineralize phenol in an aqueous solution. A fixed-bed batch photocatalytic reactor with a flat-plate geometry, irradiated by UV-A LEDs, was employed. The successful deposition of commercial TiO2 PC105 on a steel plate (SP) was achieved, and the structured photocatalyst was characterized using Raman spectroscopy, specific surface area (SSA) measurements, and UV–vis DRS analysis. These analyses confirmed the formation of a titania coating in the anatase phase with a bandgap energy of 3.25 eV. Various LED-dimming techniques, with both fixed and variable duty cycle values, were tested to evaluate the stability of the photocatalyst’s activity and the influence of operating parameters during the mineralization of 450 mL of a phenol solution. The optimal operating parameters were identified as an initial phenol concentration of 10 ppm, a hydrogen peroxide dosage of 0.208 g L−1, and triangular variable duty cycle light modulation. Under these conditions, the highest apparent phenol degradation kinetic constant (0.39 min−1) and the total mineralization were achieved. Finally, the energy consumption for mineralizing 90% phenol in one cubic meter of treated water was determined, showing the greatest energy savings with triangular light modulation.
TiO2 used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by immobilizing TiO2 NPs on the surface of exfoliated clay minerals. A series of TiO2/clay mineral composites were obtained using five different clay components: the Na-, CTA-, or H-form of montmorillonite (Mt) and Na- or CTA-form of laponite (Lap). The TiO2 component was prepared using the inverse microemulsion method. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, FTIR spectroscopy, thermal analysis, and N2 adsorption–desorption isotherms. It was shown that upon composite synthesis, the Mt interlayer became filled by a mixture of CTA+ and hydronium ions, regardless of the nature of the parent clay, while the structure of Lap underwent partial destruction. The composites displayed high specific surface area and uniform mesoporosity determined by the size of the TiO2 nanoparticles. The best textural parameters were shown by composites containing clay components whose structure was partially destroyed; for instance, Ti/CTA-Lap had a specific surface area of 420 m2g−1 and a pore volume of 0.653 cm3g−1. The materials were tested in the photodegradation of methyl orange and humic acid upon UV irradiation. The photocatalytic activity could be correlated with the development of textural properties. In both reactions, the performance of the most photoactive composites surpassed that of the reference commercial P25 titania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.