2017
DOI: 10.1007/978-3-319-59650-1_52
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid System of Deep Learning and Learning Classifier System for Database Intrusion Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
6
2
1

Relationship

1
8

Authors

Journals

citations
Cited by 14 publications
(4 citation statements)
references
References 20 publications
0
3
0
1
Order By: Relevance
“…Choi et al [18] combined evolutionary reinforcement learning to optimize the learning process of CNNs, attempting to find the ideal learning rate for each training input using the evolutionary process. Bu et al [19] combined the CNN model with a Learning Classifier System (CN-LCS), allowing the model to learn which input features to focus on to improve model accuracy. Kim et al [20] used Particle Swarm Optimization to discover improved model topologies.…”
Section: Related Workmentioning
confidence: 99%
“…Choi et al [18] combined evolutionary reinforcement learning to optimize the learning process of CNNs, attempting to find the ideal learning rate for each training input using the evolutionary process. Bu et al [19] combined the CNN model with a Learning Classifier System (CN-LCS), allowing the model to learn which input features to focus on to improve model accuracy. Kim et al [20] used Particle Swarm Optimization to discover improved model topologies.…”
Section: Related Workmentioning
confidence: 99%
“…Also, Bu et al [201], proposed CN-LCS, an IDS approach for a relational database management system that uses CNN and LCS or Learning Classifier System. This scheme can classify sparse and high-dimensional feature vectors of database queries with convolution-pooling operations and GA-based feature selection.…”
Section: F Cnn-based Schemesmentioning
confidence: 99%
“…Fase pembelajaran data mining dan komponen deteksi preprocessor transaksi berbahaya dan pendeteksi tugas pengguna berbahaya memiliki tingkat positif sejati lebih tinggi dan akurasi sistem yang tinggi ketika batas kepercayaan dan dukungan ditetapkan ke nilai yang diinginkan [10]. Metode Convolutional Neural-Learning Classifier System menjadi model terbaik dengan tingkat akurasi tertinggi sebesar 94,64% dan matriks kebingungan klasifikasi mencapai akurasi pengujian 93,36% [11]. Penelitian menggabungkan algoritma Naïve Bayes dengan Teknik korelasi pada atribut memiliki tingkat akurasi yang lebih besar dengan tanpa Teknik korelasi dengan selisih 3,6% [12].…”
Section: Pendahuluanunclassified