Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Zubair formation in West Qurna field, is one of the largest prolific reservoirs comprising of oil bearing sandstone layers interbedded with shale sequences. An average productivity index of 6 STB/D/psi is observed without any types of stimulation treatment. As the reservoir pressure declines from production, a peripheral water injection strategy was planned in both flanks of the reservoir to enhance the existing wells production deliverability. The peripheral injection program was initiated by drilling several injectors in the west flank. Well A1 was the first injector drilled and its reservoir pressure indicated good communication with the up-dip production wells. An injection test was conducted, revealing an estimated injectivity index of 0.06 STB//D/psi. Candidate well was then re-perforated and stimulated with HF/HCl mud acid, however no significant improvement in injectivity was observed due to the complex reservoir mineralogy and heterogeneity associated to the different targeted layers. An extended high-pressure injection test was performed achieving an injectivity index of 0.29 STB/D/psi at 4500 psi. As this performance was sub-optimal, a proppant fracture was proposed to achieve an optimal injection rate. A reservoir-centric fracture model was built, using the petrophysical and geo-mechanical properties from the Zubair formation, with the objective of optimizing the perforation cluster, fracture placement and injectivity performance. A wellhead isolation tool was utilized as wellhead rating was not able to withstand the fracture model surface pressure; downhole gauges were also installed to provide an accurate analysis of the pressure trends. The job commenced with a brine injection test to determine the base-line injectivity profile. The tubing volume was then displaced with a linear gel to perform a step-rate / step-down test. The analysis of the step-rate test revealed the fracture extension pressure, which was set as the maximum allowable injection pressure when the well is put on continuous injection. The step-down test showed significant near wellbore tortuosity with negligible perforation friction. A fracture fluid calibration test was then performed to validate the integrated model leak-off profile, fracture gradient and young’s modulus; via a coupled pressure fall-off and temperature log analysis. Based on the fluid efficiency, the pad volume was adjusted to achieve a tip screen-out. The job was successfully pumped and tip screen-out was achieved after pumping over ~90% of the planned proppant volume. A 7 days post-frac extended injection test was then conducted, achieving an injection rate of 12.5 KBWD at 1300 psi with an injectivity index of 4.2 STB/D/psi. These results proved that the implementation of a reservoir-centric Proppant Fracture treatment, can drastically improve the water injection strategy and field deliverability performance even in good quality rock formations. This first integrated fracture model and water injection field strategy, represents a building platform for further field development optimization plans in Southern Iraq.
Zubair formation in West Qurna field, is one of the largest prolific reservoirs comprising of oil bearing sandstone layers interbedded with shale sequences. An average productivity index of 6 STB/D/psi is observed without any types of stimulation treatment. As the reservoir pressure declines from production, a peripheral water injection strategy was planned in both flanks of the reservoir to enhance the existing wells production deliverability. The peripheral injection program was initiated by drilling several injectors in the west flank. Well A1 was the first injector drilled and its reservoir pressure indicated good communication with the up-dip production wells. An injection test was conducted, revealing an estimated injectivity index of 0.06 STB//D/psi. Candidate well was then re-perforated and stimulated with HF/HCl mud acid, however no significant improvement in injectivity was observed due to the complex reservoir mineralogy and heterogeneity associated to the different targeted layers. An extended high-pressure injection test was performed achieving an injectivity index of 0.29 STB/D/psi at 4500 psi. As this performance was sub-optimal, a proppant fracture was proposed to achieve an optimal injection rate. A reservoir-centric fracture model was built, using the petrophysical and geo-mechanical properties from the Zubair formation, with the objective of optimizing the perforation cluster, fracture placement and injectivity performance. A wellhead isolation tool was utilized as wellhead rating was not able to withstand the fracture model surface pressure; downhole gauges were also installed to provide an accurate analysis of the pressure trends. The job commenced with a brine injection test to determine the base-line injectivity profile. The tubing volume was then displaced with a linear gel to perform a step-rate / step-down test. The analysis of the step-rate test revealed the fracture extension pressure, which was set as the maximum allowable injection pressure when the well is put on continuous injection. The step-down test showed significant near wellbore tortuosity with negligible perforation friction. A fracture fluid calibration test was then performed to validate the integrated model leak-off profile, fracture gradient and young’s modulus; via a coupled pressure fall-off and temperature log analysis. Based on the fluid efficiency, the pad volume was adjusted to achieve a tip screen-out. The job was successfully pumped and tip screen-out was achieved after pumping over ~90% of the planned proppant volume. A 7 days post-frac extended injection test was then conducted, achieving an injection rate of 12.5 KBWD at 1300 psi with an injectivity index of 4.2 STB/D/psi. These results proved that the implementation of a reservoir-centric Proppant Fracture treatment, can drastically improve the water injection strategy and field deliverability performance even in good quality rock formations. This first integrated fracture model and water injection field strategy, represents a building platform for further field development optimization plans in Southern Iraq.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.