This study is motivated by the recently published papers on normal injective and normal projective hypermodules. We provide a new characterization of the normal injective and normal projective hypermodules by using the splitting of the short exact sequences of hypermodules. After presenting some of their fundamental properties, we show that if a hypermodule is normal projective, then every exact sequence ending with it is splitting. Moreover, if a hypermodule is normal injective, then every exact sequence starting with it is splitting as well. Finally, we investigate the relationships between semisimple, simple, normal injective, and normal projective hypermodules.