2022
DOI: 10.1109/tbc.2021.3132158
|View full text |Cite
|
Sign up to set email alerts
|

A Joint PAPR Reduction and Digital Predistortion Based on Real-Valued Neural Networks for OFDM Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(6 citation statements)
references
References 28 publications
0
4
0
2
Order By: Relevance
“…Teknik linierisasi dengan penerapan sebuah predisorter diterapkan pada sinyal OFDM dapat menaikkan memperluas daerah kerja linier penguat daya dan menghilangkan distorsi sinyal yang disebabkan oleh sifat tak linier penguat daya [6] [7]. Teknik gabungan reduksi PAPR dan linierisasi atau predistorsi kemudian diterapkan untuk menghasilkan kinerja yang optimal sistem OFDM seperti pada makalah [8]- [11].…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Teknik linierisasi dengan penerapan sebuah predisorter diterapkan pada sinyal OFDM dapat menaikkan memperluas daerah kerja linier penguat daya dan menghilangkan distorsi sinyal yang disebabkan oleh sifat tak linier penguat daya [6] [7]. Teknik gabungan reduksi PAPR dan linierisasi atau predistorsi kemudian diterapkan untuk menghasilkan kinerja yang optimal sistem OFDM seperti pada makalah [8]- [11].…”
Section: Pendahuluanunclassified
“…Hasil numerik menunjukkan bahwa teknik gabungan memberikan hasil kinerja sistem yang lebih baik dibanding bila diterapkan secara terpisah. Pada makalah [11] peneliti mengajukan algoritma real-valued neural network (RVNN) untuk mengevaluasi kinerja gabungan teknik reduksi PAPR dan digital predistortion (DPD) pada sistem OFDM. Kinerja sistem ditampilkan dalam nilai adjacent channel power ratio (ACPR) and bit error rate (BER).…”
Section: Pendahuluanunclassified
“…On the other hand, in OFDM systems, much ongoing research works jointly optimizes the PAPR reduction and PD matrices, for example, the work published in [261] and references therein to explore the unified PAPR reduction and DPD model that cooperate. However, in pNOMA networks, there is a lack of research work or real applications discussing the integration of PD solutions to strengthen downlink transmissions.…”
Section: B Predistortion Based On Noma Schemementioning
confidence: 99%
“…Measurements show that fewer coefficients and floating‐point operations (FLOPs) are required and better linearization performance than state‐of‐the‐art DPDs. Based on a unified RVNN model with multiobjective optimization, a method for simultaneously training PAPR reduction function and DPD function is proposed for the first time, 9 which overcomes the mutual influences between the PAPR reduction and PA's linearization. The experimental results show that compared with the conventional methods, the proposed joint optimization method has improved in terms of linearization effects and PAPR reduction performance, which has lower computational complexity.…”
Section: Introductionmentioning
confidence: 99%