Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recent AI-based technologies in mobile environments have enabled sign language recognition, allowing deaf individuals to communicate effectively with hearing individuals. However, varying computational performance across different mobile devices can result in differences in the number of image frames extracted in real time during sign language utterances. The number of extracted frames is a critical factor influencing the accuracy of sign language recognition models. If the number of extracted frames is too small, the performance of the sign language recognition model may decline. Additionally, detecting the start and end points of sign language utterances is crucial for improving recognition accuracy, as the period before the start point and after the end point often involves no action being performed. These parts do not capture the unique characteristics of each sign language. Therefore, this paper proposes a technique to dynamically adjust the sampling rate based on the number of frames extracted in real time during sign language utterances in mobile environments, with the aim of accurately detecting the start and end points of the sign language. Experiments were conducted to compare the proposed technique with the fixed sampling rate method and with the no-sampling method as a baseline. Our findings show that the proposed dynamic sampling rate adjustment method improves performance by up to 83.64% in top-5 accuracy and by up to 66.54% in top-1 accuracy compared to the fixed sampling rate method. The performance evaluation results underscore the effectiveness of our dynamic sampling rate adjustment approach in enhancing the accuracy and robustness of sign language recognition systems across different operational conditions.
Recent AI-based technologies in mobile environments have enabled sign language recognition, allowing deaf individuals to communicate effectively with hearing individuals. However, varying computational performance across different mobile devices can result in differences in the number of image frames extracted in real time during sign language utterances. The number of extracted frames is a critical factor influencing the accuracy of sign language recognition models. If the number of extracted frames is too small, the performance of the sign language recognition model may decline. Additionally, detecting the start and end points of sign language utterances is crucial for improving recognition accuracy, as the period before the start point and after the end point often involves no action being performed. These parts do not capture the unique characteristics of each sign language. Therefore, this paper proposes a technique to dynamically adjust the sampling rate based on the number of frames extracted in real time during sign language utterances in mobile environments, with the aim of accurately detecting the start and end points of the sign language. Experiments were conducted to compare the proposed technique with the fixed sampling rate method and with the no-sampling method as a baseline. Our findings show that the proposed dynamic sampling rate adjustment method improves performance by up to 83.64% in top-5 accuracy and by up to 66.54% in top-1 accuracy compared to the fixed sampling rate method. The performance evaluation results underscore the effectiveness of our dynamic sampling rate adjustment approach in enhancing the accuracy and robustness of sign language recognition systems across different operational conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.